He&%F dEAT EY 3t
Hol= i+ dA &g s H7t

Rz Eq, HdEe £ W, 149
At sk WA ek
e-mail : ductiep9l@gmail.com, tuanhiep1232@gmail.com,
kyungbaekkim@jnu.ac.kr

Evaluation of Replacement Algorithms of SDN
Flow Table Cache for Heavy Network Traffics

VU DUC TIEP, NGUYEN TRI TUAN HIEP, KYUNGBAEK KIM
Department of Electronics and Computer Engineering,
Chonnam National University

[=) [e]3
I =

Software Defined Networking is a dynamic architecture that allows fast, efficient network
changes from a centralized management point. A flow table is a vital component to support the
operation of SDN switches. However, it is very limited in size and easily filled up in heavy
traffics, which results in significant performance degradation. The issues can be mitigated by
using a flow table cache but it requires an effective flow replacement algorithm. Recently proposed
replacement approaches are: Least Recently Used (LRU), packet rate based, and ranking based
approaches. In heavy network traffics nowadays, the diverse packet rates might influence the
performance of these algorithms significantly. In this paper, we evaluate the state—of-the—art
replacement algorithms of SDN flow table cache for heavy network traffics. A SDN flow table
cache module has been implemented with three different replacement algorithms such as LRU,
packet rate based, and ranking based algorithms. The experiment was well-organized and carried
out carefully. The results indicate that the ranking based algorithm has the best performance while
LRU algorithm is the worst in heavy network traffic.

1. Introduction

Software Defined Networking (SDN) is an emerging
technology that allows to directly program the network
control and the underlying infrastructure [1]. A Flow
table is a vital component that supports the forwarding
function of SDN switches. The flow tables are build
out of physical components called TCAMs [2], which
are very expensive. Therefore, flow tables are limited in
size and get filled up quickly in heavy network, causing
significant performance degradation of SDN system.

One promising approach to resolve this issues is to
use flow table cache [3][4][5], which is a component sit
between the switch and controller. The flow table cache
approach usually requires a smart flow replacement
algorithm. In [3], a flow table cache used the Least
Recently Used algorithm [6] as the flow replacement
algorithm. Recently researchers have proposed a flow
table cache with packet rate based [4], and ranking
based [5] flow replacement algorithms. In heavy
network traffics nowadays, the diverse packet rates

might influence the performance of these algorithms

significantly. Therefore, in this work we want to
evaluate the state of the art replacement algorithms of
SDN flow table cache in heavy network traffic.

The rest of the paper is organized as follows: in
section 2, we present previous works, our observations
and motivation for the evaluation. The evaluation
scenario is described in section 3. In section 4, we
present the obtained results. Finally, we conclude this

paper in section 5.

2. Related Work

The flow table issues has been addressed and being
resolved. One way is to reduce the flow entries in flow
table by improving SDN flows and rules management
through the use of wildcard and tag as proposed in
[7][8], and [9]. A more attractive approach is to use
flow table cache to store flow entries when flow table
is full as in [3], [4] and [5]. When a packet arrives at
a switch, the switch looks up a matched flow entry in
its flow table first. Then, if there is no matched flow

entry, it will search in the flow table cache. A simple

- 178 -

flow table cache has no flow replacement strategy.
Since the speed of the cache is much slower than the

flow table, some flows should be stored in the flow

table instead. Therefore, a smart flow replacement
strategy is required to improve flow table cache
performance.

In [3], when the flow table is full and SDN controller
wants to add new flow entry, the flow table cache will
use the Least Recently Used algorithm to choose which
flow should be replaced by new entry. That is the old
flow entry which has been unused for the longest time
in the flow table. The performance of the algorithm is
further increased by ensure the fairness between
elephant flow and mice flow [3]. The elephant flows
are large in size but few in numbers compared to mice
flow. Therefore, they are usually evicted when flow
table is full.

In [4], the authors take advantage of the packet rate
of each flows into their replacement strategies. First,
the flow table cache classifies flows into groups. Each
group contains only flow entries that are dependent on
each other. The, each flow entry is given a weight
to

corresponding to the number of dependent flow entries.

corresponding its packet rate and a cost
The flow entry which maximizes the total weight will
replace the flow with lower weight in flow table.
Recently the ranking-based flow table cache was
proposed in [5]. Unlike other approaches, the ranking
based algorithm uses both packet rate and the size of
the

calculation is simple, and fast. The influence of packet

packet to classify network flows. Ranking
rate and packet size can be adjust through a weight.
The flows that have the highest rank will replace the
flow with lower rank in flow table.

Though the previous works have evaluated their
algorithms extensively with many flows, they did not
consider the diversity of flows carefully. For example,
in a large scale network, heavy network traffics create
many flows with very different packet rates and packet
sizes. The influence of diverse packet rates of traffic
the

performance of each flow replacement algorithms. Under

flows might cause significant change in
the circumstance, the algorithm that considers packet
rates of flows such as packet rate based and ranking
based might perform better than the LRU. In order to
confirm the assumption, we conducted the experiment
to evaluate the flow replacement algorithms for heavy

network traffics with really diverse packet rates.

3. Evaluation Scenario
3.1 Methodology
The of

indicated through two factors: the average packet drop

performance replacement algorithms is
ratio and the average packet delay time when each
algorithm is applied at a flow table cache. We will

measure these two factors in heavy network traffics.

3.2 Topology Setup

The topology of experiment is depicted in figure 1.
The network consists of a SDN controller, 3 switches
and 40 hosts. The switches are connected together in a
chain, and they are all connected to controller. Hosts
are divided into two same size groups: 20 hosts in
group 1 connect to switch 1 and other 20 hosts in the

group 2 connect to switch 3.

SDN Controller
Flow Table
Cache

BB

Switch 2

Group 2
20 hosts

Group 1
20 hosts

B

Switch 1

Switch &

Figure 1. Topology of the experiment.
We run OpenDaylight Controller [10] as the SDN

controller and mininet [11] is used to emulate switches
and hosts. OpenDaylight is run on computer which has
2 3.4GHz CPUs and 8GB memory. Mininet runs on a

different computer with 2 3.3GHz CPUs and 8GB
memory. A SDN Flow Table Cache module is
implemented with three different replacement

algorithms: LRU, packet rate based and ranking based

algorithms.

3.3 Experiment Scenario
First,
supports only 11 traffic flows. We create 20 flows by

in every switch, the size of a flow table
exchanging network traffics between 20 hosts of group
1 and other 20 hosts of group 2. The packet size of
every packet is 1024 bytes. The packet rate of each
flow is varied in linearly increasing manner. As shown
in figure 2, we have totally 5 packet rate profiles with
different scale for the created flows. Each profile is

applied one by one while we evaluate each algorithm.

4. Evaluation Results
The experimental average packet drop ratio and
average packet delay time are shown in figure 3 and

figure 4 respectively. As can be seen in figure 3, the

- 179 -

performance of LRU algorithm degrades dramatically at
packet rate 200 packet/s with 62% packet dropped, and
up to nearly 100% when the packet rate increases.
From 200 to 400 packet/s, no replacement, packet rate
based and ranking-based perform equivalently with
almost 0% packet drop. At packet rate of 800 packet/s,
the performance of no replacement and packet based
algorithm degrade significantly with packet drop rate of
71% and 31% respectively. However, at that point, only
5% packet being dropped by the ranking-based flow
table cache, which is 66% and 26% less than no
replacement and packet rate based methods respectively.
From 1200 up to 1600 packet/s, the ranking based
method also decreases performance significantly but the
packet drop rate is still 109 lower than no replacement

and packet rate based methods.

1800 N SR T L LN S S B ERL B i B [N S A ER B |
190 = Profile 1 >
1400 - e Profile 2 «
=] 4 Profile 3 o
= 12004 v Profile 4 & e
s & Profile 5, o =
E 1000 P & v -
1 &
@ - v
+< 800+ E ol
E] L . . 2 _’k..&"k
% 600 i ol g .
3G L “"
g g * v *'_‘..
o 400 e v P PR
b * - v PRENS: = [
Jt v v A o ®
200 ¥ 3 I_‘-:’ - e '._ R mww "=
e
0 R TR e s S A T P A F0) o e)) A i)
12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20

Flow Entry Number

Figure 2. Flow's packet rate arrangement of traffic profiles

100 | T T 1
- L] !
L3 -~
_— 4
80 -] A]
- i 1
g /7 '
S 60+ ‘ : iy
had
4
o
3] =— no replacement /
O 404 e LRU based]
3 4 packet rate based i
o v ranking based /
& 0]]
v
0 T T : T ; T j
200 400 800 1200 1600

Max Packet Rate (packet/s)

Figure 3. Average packet drop ratio

As shown in figure 4, from 200 to 1200 packet/s, no
replacement, packet rate based, and ranking based have
almost equivalent packet delay time. At 1600 packet/s,
the packet delay goes up dramatically for all methods,

but the ranking based still has packet delay time
smaller than packet rate based and no replacement 1200

ms and 3600 ms respectively.

15000 ’ . . :
= no replacement
® packet rate based
4— ranking based /
10000 /1
é Iy
==
@
[11]
0 5000+
@ //
22
3] /4
o Y/
J
0 & —— 8 —— -

200 400 800 1200 1600
Max Packet Rate (packet/s)

Figure 4. Average packet delay time

5. Conclusion

A smart flow replacement algorithm of a SDN flow
table cache is a challenging issue for researchers,
though some algorithms have been proposed. This
paper was driven by the goal of realizing the impact of
diverse packet rates in heavy network traffics to
performance of replacement algorithms of SDN flow
table cache. In such case, we predict that ranking
based and packet based algorithms would be more
efficient than LRU algorithm. Our experiment was
conducted carefully and the results prove that our

prediction is correct.

Acknowledgements
This work was supported by the National Research
Foundation of Korea Grant funded by the korean
Government(NRF-2014R1A1A1007734).

References
[1] “Software-Defined Networking (SDN) Definition”,
Available at: https://www.opennetworking.org.
[2] “TCAMs and OpenFlow - What Every SDN
Know”, Available at:
https://www.sdxcentral.com, 2012.
[3] B.S. Lee, R. Kanagavelu, and K. Aung, “An efficient

flow cache algorithm with improved fairness in

Practitioner Must

networks”, Cloud
Networking (CloudNet), 2013 IEEE 2nd International
Conference on, pp.18 - 24, Nov 2013.

[4] N. Katta, O. Alipourfard, J. Rexford, and D. Walker,

software-defined data center

- 180 -

“Infinite cacheflow in software-defined networks”,
Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, HotSDN '14, New York,
NY, USA, pp.175 - 180, ACM, 2014.

[5] N.T.T Hiep, “Ranking-based Flow Table Cache for
Scalable Software Defined Network”, Master Thesis,
Department of Electronics and Computer Engineering,
Chonnam Nation University, July 2015.

[6] “The least recently used page replacement
algorithm”, Accessed: 2015-09-1

[7] AR. Curtis, JC. Mogul, J. Tourilhes, P.
Yalagandula, P. Sharma, and S. Banerjee, “Devoflow:
Scaling flow management for high performance
networks”, Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM 11, New York, NY, USA,
pp.254 - 265, ACM, 2011.

[8] S. Banerjee and K. Kannan, “Tag-in-tag: Efficient
flow table management in sdn switches.,” CNSM, ed.
D. Raz, M. Nogueira, ER.M. Madeira, B. Jennings, L.Z.
Granville, and L.P. Gaspary, pp.109 - 117, IEEE, 2014.

[9] M. Yu, J. Rexford, M.]. Freedman, and J. Wang,
“Scalable Flow-Based Networking with DIFANE”,
SIGCOMM Comput. Commun. Rev., vol.40, no.4, pp.351 -
362, Aug. 2010.

[10] OpenDaylight, “https://www.opendaylight.org”,
Accessed: 2015-09-01.

[11] “http://mininet.org”, Accessed: 2015-09-01.

- 181 -

