
 SDN

*, *
*

e-mail: tuanhiep1232@gmail.com, kyungbaekkim@jnu.ac.kr
 

Ranking-based Flow Replacement Method for Highly Scalable SDN 

Hiep T. Nguyen Tri*, Kyungbaek Kim* 
*Dept of Electronics and Computer Engineering, Chonnam National University

       

Software Defined Network (SDN) separates control plane and data plane to achieve benefits such as 
centralized management, centralized provisioning, lower device cost and more flexibility. In SDN, scalability is an 
important issue. Centralized controller can be a bottle neck and many research tried to solve this issue on the 
control plan. However, scalability issue does not only happen in the control plane, but also happen in the data 
plane. In the data plane, flow table is an important component and its size is limited. In a large network operated 
by SDN technology, the performance of the network can be highly degraded because of the size limitation of a 
flow table. In this paper, we propose a ranking-based flow replacement method, Flow Table Management (FTM), 
to overcome this problem. 

1. Introduction 

In the past few years, SDN (Software Defined 
Networking) has become a hot topic in computer networking. 
In SDN, dummy devices in data plane are controlled by a 
centralized controller in control plane. Whenever a device 
receives a packet, it matches the packet header with flow 
entries which are stored in a flow table inside the device. If 
there is no flow entry is found, the device will send a request 
to ask the controller how to handle the packet. Then, the 
controller might install flow entries to the device. Because of 
separating control plane and data plane, SDN offers some 
benefits for the network operator such as centralized 
management, centralized provisioning, lower device cost and 
more flexibility. With these benefits, SDN is promised as a 
valuable solution for a back bone network which contains a 
lot of devices.  

However, SDN also issues new problems such as 
scalability. In a large network, a centralized controller has to 
manage thousands of devices and conduct millions of 
requests per second. The centralized controller can become a 
bottle neck that decreases the network performance 
significantly. Past research has tried to handle this issue [1] 
[2]. The concept of distributed controllers is one of solutions, 
in which each controller controls a part of a large network 
that has less number of devices and less number of requests.  

The scalability issue does not only happen in the control 
plane but also happen in data plane. Generally many SDN 
devices employ Ternary Content-Addressable Memory 
(TCAM) as storing the flow table and lookup flow entries for 
a given packet header. TCAM is a specialized high-speed 
memory that searches its entire contents in a single clock 
cycle, but it has some disadvantages; such as high power 
consumption, high cost, and low utility of ASCI space. 
Increasing flow table size can lead to other issues such as 

price, energy and size of a device. Therefore, the flow table 
size of a network device is limited. In a large network which 
contains thousands of network devices and millions of end 
user devices, the number of flow entries might be up to 
millions. This is a huge number if we compare with the 
ability of managing flow entries in a network device. For 
example, a 5406zl switch can support about 1500 OpenFlow 
rules or 64000 forwarding entries for standard Ethernet 
switching [3]. Hence, a flow table of a device can be easily 
filled with enormous number of flows.  

When a flow table is full, for every packet which doesn't 
match any flow entry in the flow table and the network 
device has to send a request to the controller. If the controller 
fails to install a new flow entry to the device, an option for 
the controller is to replace an old flow entry by the new flow 
entry and let the network device does its function. Another 
option is that the controller forwards packets by itself. That is, 
the controller might send packets to appropriate network 
devices which might be the closest network device to the 
destination of a packet. In the second option, the controller 
might have to process a huge number of packets if the packet 
belongs to a high loaded flow. Moreover, it may also lead to 
other problems such as bypassing network security functions. 
For example, when we put a firewall to prevent a malicious 
traffic from reaching a destination and the controller handles 
this traffic flow, the traffic can bypass the firewall. Like the 
first case the replacement of flow entries can be used for 
preventing these possible issues with the second option. But 
the controller might spend a lot of resource to replace flow 
entries. If the number of active flows is larger than flow table 
size, the controller has to repeatedly replace flow entries. 

In our work we focus on the scalability issue in the data 
plane. A past approach was proposed to solve this issue is to 
combine flow entries and reduce the number of flow entry 
[4]. In fact, combining flow entries contains hidden issues 

- 143 -



because the combined flow entry comprises equal or more 
than the original flow entries. When the controller fails to 
install flow entries because flow table is full, as we discuss, 
the controller should let packet goes through network devices 
as it always does. Hence, a replacement strategy is required 
to improve the performance. For example, we could replace 
flow entries that are for handling lower load traffic by new 
flow entries that are for handling high load traffic. In order to 
do that, we have to collect statistic information from the 
network device. However, if the number of active flows is 
larger than flow table size, the replacement can be repeatedly 
happened. Therefore, the controller should consider whether 
a new flow entry should be replaced or not. It might make 
the controller process a lot of packets that match non-
installed flow entry. A cache module which can quickly 
handle the packets that match non-installed flow entry is an 
answer for this issue. In this paper, we propose a control 
plane flow management which replace and cache flow entries 
smartly to handle scalability issue in control plane. We 
describe the design of the required modules of the 
management system. 

2. Related Works 

2.1 SDN Operation 

In this section, we explain the basic SDN operations. The 
architecture of SDN is composed of three layers such as 
Application layer, Control layer, and Infrastructure layer [5]. 
The infrastructure layer (or the data plane) includes network 
element such as switches and access points. The role of 
network element is to forward a packet to its destination or 
drop it. The control layer includes a controller which 
interacts with the network elements on the infrastructure 
layer through southbound interface. It also provides an 
interface to applications of the network (northbound 
interface). The application layer includes applications which 
control the network via northbound interface based on the 
policies given by network operator. 

 

Figure 1. Flow Entry in a Flow Table 

Generally, the northbound interface is implemented as a 
RESTful API, and the southbound interface implements the 
OpenFlow Protocol [6]. The OpenFlow Protocol is a protocol 
for a controller to communicate with network devices for 
configuring and monitoring them. In the OpenFlow Protocol, 
each network device has a flow table which contains flow 
entries. Figure 1 describes fields of a flow entry in a flow 
table. The match fields consist of the information of ingress 
ports and packet header information, such as source/ 
destination IP/MAC address, Ethernet type and source/ 
destination port, and other metadata which are specified in 
flow tables of other network devices. When a network device 
receives a packet, it looks up its flow table and tries to find 
flow entries which have the matched information of the 
packet header. If the packet header matches multiple flow 
entries, the flow entry which has highest priority value is 

used. The counters field indicates how many times the flow 
entry is used by increasing its value whenever it is used. The 
instruction field has a list of actions which indicate how to 
handle packets such as forwarding packets to output ports, 
dropping packets, and modifying the payload or the header of 
the packets. The timeouts field is used for cleaning up flow 
entries, that is, deleting flow entries from a flow table. The 
cookie field can be used by controller to filter flow statistic, 
flow modification and flow detection. This cookie field is not 
used when processing packets. 

Figure 2 illustrates the basic SDN operations for 
transferring traffic of a flow. Firstly, a source host sends the 
first packet of a flow to a network device (1). Secondly, the 
network device looks up matched flow entries. If there is no 
matched flow entry, the network device sends a request to the 
controller (2). In the controller, the request will be forwarded 
to the control application. After getting the request, based on 
the knowledge of the network, the application makes a 
decision and tries to install flow entries to all of the network 
devices along the path of the packet (3). After installing the 
flow entries, the application sends back the packet to the 
network device which requests the flow entries as well as to 
the last network device of the path of the packet. Then the 
last network device forwards the first packet to the 
destination host (4). After deploying flow entries in every 
network devices related to the flow, the network devices 
handle the following packets of the flow by referring the 
instruction field of the deployed flow entry (5). 

 

Figure 2. Basic SDN operation of setting up  
a network flow 

2.2 Previous solutions for scalability issue 

Some previous works focused on the scalability issue, but 
they consider another aspect, that is, they try to reduce the 
number of flow entries [7] [8]. In [7], by using wildcard they 
can reduce the number of flow entries. Additional, the flow 
entries of normal switch are stored in the authority switch 
that has bigger memory. When a flow comes to ingress 
switch, it will match a partition rule that redirects the 
message to an appropriate authority switch. In authority 
switch, the packet matches an authority rule that forwards the 
packet to the egress switch and it installs a cache rule to the 
ingress switch. The subsequent packets come to ingress 
switch will match the cache rule which has higher priority 
than partition rule. Hence, the ingress switch can forward 
packet to egress switch directly. This method can keep the 
packet in the data plane and reduce the delay caused by 
intervention with the controller. 

In [8], instead of using wildcard to reduce the number flow 
entries, the authors combining the flow entries which have 
the same path to one flow entry in the middle switch. When a 

- 144 -



packet comes to an ingress switch, the ingress switch adds 
two tags to the packet. A flow tag specifies the flow of 
packets. And a path tags that is used to specify the path of 
packets. When the ingress switch forwards a packet to a 
middle switch, the packet matches a flow entry by the path 
tag. Therefore, the packet can be forwarded to the egress 
switch which removes both tags. Instead of storing multiple 
flow entries that do the same action-forwarding packet to the 
same path, the middle switch needs to store only flow entries 
which match the tag and does the same action. 

Our proposed solution considers another aspect. We try to 
expand a flow table logically. However, a flow table of a 
device has some limitation about increasing the volume as 
we discuss before. Therefore, instead of increasing the flow 
table size by hardware, we increase the size of flow table by 
using software that running on a machine which has much 
bigger memory. 

3. Flow Table Management 

 

Figure 3. Architecture of Flow Table Management 

In this section, we describe the detail design of Flow Table 
Management. Flow Table Management contains 3 modules; 
collection module, replacement module and cache module.
Collection module is to collect the statistic information of 
flows. Replacement module is to replace flow entries when 
controller fails to install a new flow entry because a flow 
table is full. It answers two questions whether new flow entry 
should be installed and which old flow entry should be 
replaced. Cache module stores the flow entries which are not 
installed to a device by Replacement module. Hence, it can 
quickly handle the packet which matches with cached flow 
entries and replaced flow entry. These three modules can be 
integrated into a controller. However, a controller is a bottle 
neck of SDN and putting these modules inside the controller 
may make it worse. According to this, it is preferred to locate 
a middleware with Flow Table Management between a 
controller and devices. Figure 3 describes the architecture of 
Flow Table Management (FTM). FTM can be deployed into 
multiple middleware nodes and each node operates 
independently. When the number of devices increases, the 
number of nodes with FTM can increase to distribute the 
load of FTM. So that, each FTM node is not overloaded and 
it prevent from being a bottle neck of SDN. Every transfer 
message between a controller and a device must goes 
through FTM. FTM will only process related packet type 
such as install flow entry and statistic response. With other 
packet types, FTM simply forwards it to a controller or a 
device. 

3.1 Replacement 

Replacement module decides whether a new flow entry 
should be installed or not and which old flow entry should be 
replaced. To improve the performance of SDN, we will try to 
keep high load network traffic in the data plane and let cache 
module handle low load network traffic. That is, we will try 
to minimize the number of packets as well as the bandwidth 
of flows which are handled by cache module. Achieving both 
goals together is almost impossible. Therefore, we run a 
simple ranking algorithm to compare the utility between flow 
entries. When a controller application fails to install a flow 
entry to the switch, replacement module compares the rank 
of the new flow entry and installed flow entries in the 
switching device. If the new flow entry has higher rank than 
some of the flow entries in the device, replacement module 
replaces one of lower ranked flow entries with the new flow 
entry. Equation (1) shows a basic method to calculate a rank 
of a flow. In this equation, V means the load of a flow and W
means the weight value for a category of a flow. 

(1) 

      (2) 

When replacing flow entries, the timeout field of the flow 
entry can be modified. If the replaced flow entry is related to 
a high load flow which has a characteristic of long session 
time, replacement module increases the timeout value of the 
flow entry. On the other hand, if the replaced flow entry is 
for a low load flow with a short session time, the timeout 
value of the flow entry decreases. According to this, 
replacement module may reduce the number of replacement 
operations. 

3.2 Collection 

Collection module periodically sends request to switching 
devices to collect flow information inside the devices. Then, 
this information is stored in the local storage of FTM 
middleware, and it is used in replacement and cache module. 
In order to save bandwidth and to improve the performance 
of SDN, collection module tries to use statistic information 
of communication packets between devices and a controller. 

3.2 Cache 

Cache module is to handle requests from switching 
devices. Cache module stores the new flow entries which are 
not installed into switching devices as well as the replaced 
flow entries from switching devices. When a device sends a 
request to the controller, cache module tries to find a 
matched flow entry. If it exists, cache module sends a 
response to the device with an instruction to handle the 

)max(

R
1

f

f

if
if

k

i
ifi

V
V

S

SW

- 145 -



packet. Otherwise, the request is forwarded to the controller 
like normal requests. 

4. Conclusion and Future Works 

In this paper, we propose a solution to solve the flow table 
size issue in data plane. In order to improve performance of 
SDN, we propose a flow replacement management 
middleware with three different modules; cache, replacement, 
and collection. Especially, to replace flow entries for better 
performance, replacement module uses a ranking method to 
sort out the utility of flows.  

Currently, we are working on implementing this ranking-
based flow replacement method into an SDN application 
over OpenDaylight SDN controller. 

Acknowledgement 

This work was supported by the National Research 
Foundation of Korea Grant funded by the Korean 
Government (NRF-2014R1A1A1007734). 

References 

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. 
Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, 

platform for in
Proceedings of the 9th USENIX Conference on Operating 

. Berkeley, 
CA, USA: USENIX Association, 2010, pp. 1 6. 

scalability of software- IEEE
Communications Magazine, vol. 51, no. 2, pp. 136 141, 
2013.  

[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalag, P. 

management for high- in
Proceedings of ACM SIGCOMM, 2011. 

[4] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, 

in Proceedings of the First Workshop on Hot 
. New 

York, NY, USA: ACM, 2012, pp. 121 126. 
-09-12. 

[Online].Available: https://www.opennetworking.org/im 
ages/stories/downloads/sdnresources/technical-reports/T 
R SDN ARCH 1.0 06062014.pdf 

2014-09-12. [Online]. Available: https://www.opennet 
working.org/images/stories/downloads/sdnresources/onf-
specifications/openflow/openflow-specv1.4.0.pdf 

[7] Milan Yu, Jenifer Rexford, Michale J. Free Man, and Jia 
alable Flow-Based Networking with 

in Proceedings of ACM SIGCOMM, 2010. 
-In-Tag: 

Proceedings of 10th International Conference on 
Network and Service Management , pp. 109-117, 2014. 

- 146 -


